

Classifying Out-Of-Vocabulary Terms in a Domain-Specific Social Media Corpus

SoHyun Park Brandon Seibel

Afsaneh Fazly Wenjie Zi Annie Lee Paul Cook

Introduction

- High rate of out-of-vocabulary (OOV) terms in social media text.
- Presents challenge to most natural language processing (NLP) systems as they rely heavily on lexical knowledge.
- Goal: automatically classify OOV terms in automotive web forums into domain specific categories.
- Coarse-grained categories could serve as a preliminary source of lexical knowledge about the out-of-vocabulary terms

Methods

- Supervised learning approach
- Features sets:
 - Character N-grams
 - Language models
 - Frequency
 - Word embedding
 - Surface form
- Experimental setup: 10x10-fold cross-validation logistic regression

_	Category	Num. items	Explanation	Examples
•	AUTO	45	Automotive terms (not NEs)	defuel, rebalance
	DRUG	95	Drug names	levoxyl, nexium
	FOREIGN	47	Non-English terms	rezeptfrei, depuis
	MEASUREMENT	58	Units of measurement	77k, 100mph
	NE-AUTO	140	Automotive-related NEs	ls3, volks
	NE-OTHER	41	Non-automotive NEs	blackhawks, diaz
	NOISE	87	Noise, and items that don't fit other categories	kagvjfcjfx, kzvddzfv52
	SLANG	59	Internet slang and non-standard forms	heyyaa, lol2
	SPELLING-ERROR	93	Spelling errors	youll, genericfor

Results

Method	Precision	Recall	F1 score	Accuracy
Most-frequent class baseline	0.023	0.111	0.039	0.211
[A] Characater n-grams (1-3)	0.390	0.373	0.380	0.413
[B] Language models	0.023	0.111	0.039	0.211
[C] Frequency	0.023	0.111	0.039	0.211
[D] Word embeddings	0.649	0.599	0.622	0.643
[E] Surface form	0.390	0.400	0.394	0.446
[A+B+C+D+E]	0.643	0.603	0.622	0.649
[B+C+D+E]	0.649	0.602	0.624	0.646
[A+C+D+E]	0.640	0.605	0.622	0.648
[A+B+D+E]	0.650	0.609	0.628	0.654
[A+B+C+E]	0.429	0.422	0.424	0.469
[A+B+C+D]	0.614	0.582	0.597	0.629

- Interpolated precisionrecall curve for ranking based on probability of NE-AUTO class
- Ranking can be useful for semi-automatic identification of NE-AUTO terms

 Word embedding features are very informative of OOV meaning